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INFIMITE.SYSTEMS OF LINEAR EQUATIÖNS 
IN AN INFINITE NUMBER OF UNKNOWNS! 

A. INTRODUCTION 

The solution of a large class of-physical problems, including diffraction öf elec- 

tromagnetic waves by periodic structures, or combinations of simple scatterers, and 

resonance phenomena in enclosed spaces>lead to infinite systems of linear* equations 

in an infinite number of unknowns. Conventional methods of solving finite sets of 

linear equations-must be extended with care to the infinite system. This report is^ 

a brief summary of available information on the solution of such infinite* systems, 

with emphasis on the important distinctions between the finite and infinite cases'. 

B. EXTENSION OF CRAMER'S RUUE TO INFINITE' SYSTEMS 

CRAMER'S RULE 

Consider the set of equations: 

2  a... *.. = b. 
k=i ik *k      ui (i = 1,2,3, v"). (1) 

Let the determinant of the array a.^ be denoted by A,,, where 

\ = 

a a a 
11    12    13 

a a a 
21    22'    23 

a a a 
31     32     33 

a m 

3» 

a a a 
•ni-   712   -*»3 

(2), 
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tC*) 
and let A^  represent the- determinant of the ai;ray formed' by' replacing' the &'"' column- 

of (2) by the set J>is&2, bfi.    If the determinant ^ is nonzero, Cramer's rule^ 

states that the unknowns x^  are given by 

Xk  -- (3) 

This is the unique solution to system (1) if A^ is nonzero; if A^ is zero, the system 

of equations may possess up to n independent solutions or~ no solution depending upon 

the values of bf, and a modified approach must be-used. c 

For an infinite system of equations the- concept of determinant,is open to.defi- 

nition, but an extension of Cramer's rule tö such a system is suggested;. Consider 

the infinite system 

fe=i 
«ik xk ~ bi (i = 1,2,3, "•'•») (4) 

If this infinite array is considered as the limit of a' sequence of finite, square 

arrays, the hth  array in the sequence being given by (D, then logical extension of 

Cramer's rule äs applied to finite systems would suggest that the Solution be given 

by the limit (when it exists1): 

x, - lim 
n-t»   An 

(5) 
1^ 

Such an extension of Cramer's rule is not generally valid,  as several examples will 

show.    Consider the infinite system of equations: 

?"      aiiX.-bi    ,        (i = 1,2:3,   ••••••) (6) 

»-I 

fc* 

aij =0      i < j 

ai;. = 1      i > j 

b{   = (-1) 
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By inspection it is seen that 

A„, = 1       for all n, 

A„      = 2 (~I)     , where k 1 n,  and 

£> - M>"   . 

Therefore, by (5), 

A?j 
*fc = Lim  -2a- = 2(-l) . 

n. -». CO- ^ 

(7) 

Upon, substitution of the "solution" into the equations of (6), however, the row 

series do not converge. The extension of Cramer's rule does not yield a verifiable 

solution in this case. Another system for which the extension of Cramer's rule is 

in doubt is given by 

2 ä.c x.  = b.        (i = 1,2,3, • •• •).. 

where a., = 0, except a^ .. - 1, of- i+1 - - ly ««id 6j - 0., 

By inspection 

\ = L 

n 

Therefore, by (5), 

£} 
x   = Lim —2— = 0. 

"-* A 

(8) 

(9) 

By.inspection, however, an infinite number of solutions to'system (8) exist of the 

form x,  = c.    In this instance, the extensic 

solution, but it is not a unique solution. 

form x,  = c.    In this instance.the extension of Cramer's rule gives a verifiarne 
k -' 

As the preceding examples illustrate, application of the extended form of Cramer's 

rule to ihfinite systems must be made with care. 
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Appendix I-develops sufficient conditions for the application of Cramer's rule 

to infinite systems of equations. It must be emphasizedihat these conditions need 

not he satisfied for Cramer's rule to apply; they are sufficient hut not necessary 

conditions. Two types of conditions will be rioted. The first set of conditions are 

those sufficient for the infinite set of linear equations to have a unique solution 

given by the extended Cramer's1 rule. They are: 

1. The determinant <>f the array must be 8"normal*' 

2. The limit of the A must be nonzero 

3'. The sequence j>;f, must be bounded. 

The determinant of an array is said to be "'normal" if the double series ZHet.. - 8^.) 

converges absolutely, where 8.. denotes the Kronecker delta. The secoiad set of con- 

ditions, are less stringent, and are sufficient for the infinite set of equations to 

possess a solution (not necessarily unique) given by the extended form of Cramer's! 

rule. These are:   (k) (k) 

1. The ratio 
£> r   A' 
——  converges, uniformly with R, to a limit— 
&„ A 

for k -  1,2,3, «<>«• 

2. 

3. 

Än f 0, for n sufficiently large 

2 a.. | • converges for i 1,2, 

4. The sequence 6- must be bounded. 

The second set of.conditions essentially substitutes the weaker condition of absolute 

summability of the rows for the stronger condition that the determinant of the array 

be normal. In. many cases arising from analysis of physical problems the existence 

of a unique solution may be implied by other considerations, and the weaker set of 

conditions used to justify extension of Cramer's rule to the system  Note that (8) 

is an example of a system satisfying the weaker set. of conditions for the application 

of Cramer's rule, and the solution given by this rule is valid, but not unique» 

Since the system does not satisfy the stronger conditions (its determinant is not 

normal) one would not expect this solution to be unique. 
A 

The extension of Cramer's rule to infinite systems öl equations is not a satis 

factory general method of solution, therefore, since 

1. It does not yield the general solution 

2. Necessary and sufficient conditions for application of this rule are not 

known 

3. Sufficient conditions, which may be stipulated are difficult to test in an 

actual system, since the absolute convergence of a double series must be 

ascertained. 
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16 miisfe Be emphasized' that for special systems of equations,,where the sufficient, 

conditions for application of Cramer's rule are obviously satisfied,, this rule gives 

a rapid method1 of obtaining a solution, and is quite useful», 

0. THE METHOD OF SCHMIDT 

The most satisfactory general technique for solving infinite systems öf linear 

equations has been developed by E. Schmidt. The text of an excellent paper on this 

method by Maxime Bbcher and Löuis Brand is reproduced in full in Appendix IT» Tn 

brief, the important characteristics of Schmidt's method are as follows: 

L    The matrix of the infinite system of equations is' multiplied by its complex 

conjugate transpose to form a new array 

2. The solution of the system is given by the limit.öf the ratios öf deter- 

minants, formed from subarrays of increasing order., much as in Cramer's 

method 

3. If a unique solution öf finite norm exists,, this-methöd yields it; if more 

than one solution exists, this method gives the one of minimum norm and can 

bö- used to', obtain' the general. solution' 

4. Necessary and sufficient conditions for the existence öf ä solution öf 

finite norm are given.. 

It may be noted that the solutions öf physical problems which are of interest are 

those of minimum nöfm„ exactly those given by Schmidt's method. 

CONCEPT OF INVERSE APPLIED TO INFINITE SYSTEMS 

The infinite system of linear eqs. (4)  may be written in matrix form as 

AX = B, 

where A  is the infinite matrix of coefficients a...  X is a column vector in the ün- 

kriowns x.,  and ß is the column vector of constants b.„    In analogy with a finite 

system, it may be asked if A has ah inverse matrix C stich that 

AC = CA = L 

Then the solution would he,given'by; 

' X = CB . 
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Infinite-matrices, however,*dö not generally possess unique. inverses-.' An infinite 

! •matrix'may possess an infinite number öf fight or left'inverses,, If-an' infinite' 

matrix possesses Both-a right and left inverse they are equal and. unique. To i'Hü's- 

*; träte a matrix which possesses an infinite number of right inverses!, consider the 

!s ihfiriite-ärfäy A- ((di.  )) where äi-=  0, except oft- i+J = I. By inspection,! the" 

matrix G= ((c...)), where c, . is arbitrary, p., , - = 1, and all other p.:  äre'Zerö, 

. ; is ä right inverse of A.    That is 

| /fC--=J 
i 

«<        • .        ......      . .     .. v. 
.«! for an infinite number 6f matrices Cdifferingfey elements.* in the' firsts row»    No |f 

;] ' left'inverse exists' for A, however,  sincethe;, prödqc.t GA has- all-zeros in' its-first 

| column for any matrix C- 

i 

Appendix III outlines a modification 6/ Schmidt*s method.which develops stiffi- 

• ' cieht-conditions- för ä'-mätfix" B  tö exist such thatyif 

ij AX- = G, 

« the solution vector is given by 
7] . - ' 
I] X-=BG, 
f / 
|. "where 4 and ß are infinite square matrices, and X and G are" infinite" column vectors, 
t 
a: I 

i 
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APPENDIX 1 

to  NORMAL ARRAYS 

Consider the following infinite square array: 

l+Oii     a12     als 

«21 

asi 

M-l 

1+a. 22 

1+äs 

•«14 

i24 

*34 

*42 a43   1+a. 44 

(.1) 

T 

W 

1 "I 

y 

\. 

i * 

i 

where the a., are complex quantities,, and the double series 2 2 |q..|-converges. Such 
SO      J, , 

aft array is described as !enormal". Furthermore, let A.-2  |a,.|-, where the series 
<p oo .   . .  * oo 

definingA.  converges since the double series 2 2 |a..|-converges* 2 A.  converges 
J i j      '•> j=i    } 

for the same reason. It then follows that the sequence of products IIn ~U   (1+A._) 

converges to ä limit II. Consider now the determinants of the finite square siübarrays 

1+Oj.i      o12      •'     ••     "' 

A„ = 

*21 

xni 

1+a 22 

«In 

a2n 

*n2 1+a,. 
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These determinants are sums of. certain products, of the a.., with proper sign attached. 

The. same products, occur also, in: absolute value,  in the developc»nt of II .    Further- 

more, A^     contains all the terms of An, • and the other terms of An      appear, in ab- 

solute Value, in II       -IK    Therefore, it follows that |Aj<IIn , |A     - Aj^II     -fl^ 

and 

Lim A   = A (3) 

exists, where |A| -^EL Anormal array may be. said- to possess an infinite determinant 

A considered as a limit of.determinants of finite square subarrays, and this limit 

determinant is bounded by 'EL 

k ' i . ,    • 
The.determinant Ai of an array, formed by replacing the .k'f   column of abnormal 

array with a. bounded sequence also exists, and A <.MU,  where M is the upper-bound 

to the sequence» 

2.  LAPLACE'S DEVELOPMENT OF HORMAL ANRAYS 

The. analogue of.Laplace's development of a finite determinant for an infinite 

system will now be established. A preliiiinary definition is required. 

DEFINITION:By-«he minor (ft) of the determinant A of a normal matrix (array) 
k    ~ # 

A,  we shall mean the resulting determinant.A of the matrix.formed by substituting.. 

for the kih column of A the sequence b.  = 8-.... As in the finite case, the minor (ft) 

does not change if all the elements in the i     row are replaced by zeros except the 

element in the ft  column.. 

THEOREMS: If A is a normal matrix, and cf is a bounded sequence, then 

oo    » 
(a) £  |(ft)|'converges, and its value does not exceed II 

i=i 
k     oo   * 

(b) A = y (ß) c.„ and the series on the right converges absolutely* 

PROOF: Since the convergence of ~  |(ft)|\implies the convergence of ^ (fc)^, 
i i=i i=i 

we first show that _  |„(k) 1' converges. It suffices to show that the partial sums 

i=i 

n    i 

._  I(fe) I are bounded for all n. 
i=i 

CQNFIQENTSAL 
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Let.A be the infinite determinant of the matrix formed by substituting for the 

k     column- of A  the sequence b.  where , 
i i 

(k) h z < n 

l<*)| 
(4) 

bt  = 0 , i > n  „ - ' (5) 

Here the 6f are bounded by unity, and n is arbitraryo Then Afe = £  |(k)'j' and 

|A |-<.IL Since n is arbitrary, this implies the convergence of 

2:   l(i)l 

It.remains to verify the second part; of Theorem 1. Let ri, be an arbitrary integer, 

and form from the bounded sequence c^ the sequences 0^ and= ß^  , where 

ai ~ c-i  » i < n+1 (6) 

1 ai = 0 , i > n+1 

and 

m 

ßi=0   ,   i<n (8) 

ßi = c.  , i > n (9) 

Let A* be the infinite determinant of the matrix formed from A by replacing the kf 

column by the given sequence cio Let A  be the infinite determinant of the matrix 

formed from A by replacing the fe  column by the sequence Ct£. Let A be the infinite 

determinant of the matrix formed from A by replacing the ktk column by the sequence /3{. 

Then 

A* = 1    (h 
-l X     ,~' 

£=i 

i. - S (10). 

.0 ' 

Afe -S_ = A* (11) 

If A* represents the finite determinant obtained from the first n   elements of the 
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matrix yielding A^ , A2[f- 0' if n
1 < &, since the corresponding, matrix would: contain a 

entire column of zeros., Furthermore, 

an 

K-A|J-<//(n-nrt) , 

where M is an upper bound to the c^    Therefore, for n > k, 

JA*-A*J- = |A2} = |A*-S„| <c(n-u 

and in the limit 

S»-*% > 

(12) 

tm 

(14) 

establishing the second.part of.theorem. If the elements of A are a-. + 8,: the 

following, statements are: evident: 

t   a> 

(*J + ' ? «VW=V- 
,*v 

i J 

0) + 2 *•* (*) = **-*. 

(15) 

M 
ä> ob     "    t 

arid' the double series j? 2 a/jfe cj(^) is absolutely convergent. We now apply these 
» i   ' k t 

properties of normal arrays to solutions of infinite systems of linear equations. 

"ft* 

r i 

I* 

I."- 

\* 

3.  EXTEMSIOH OF CRAMER'S RULETQ\ INFINITE SYSTEMS' 

THEOREM 2: Given the infinite s'ystem of linear equations 

i=i 

where 8.. + a..  is a normal'array „ c . • < Af < °° 

for all i,  and the infinite.determinant ..A of the array is nonzero. It then follows 

that the unique solution of the equations is given by 

A*   ,   *> 
9 

A 
xi.r (18) 

where A is the determinant of the array formed from the given array by substituting 

10 

0 N F i 0 E N TIA 
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c& 

~—1^4 

fcHe' seqaeiice c*. for- the- fefh coluthnv 

PROOF- 

(a). For an arbitrary j 

I        oo £       oo j ob' ob i 

Ä7 +-2   aw. A   = 2   c. (j) H-,2   o... 2     c£ (c) (19) 

= 2   c. (}) + 1   a,,  (I) 
fe=i   JR 

(20) 

»     ! 

= c. A ._ 

Since A is nonzero, 

AJ    ao 
—+ 2   a-t^—- c. 

A   *=i   ** A        J 

meaning that 

A8 

yields the components of ä solution. 

(b). Proof of uniqueness. 

(21) 

(22) 

^1 

j 

* 

n 

<J 

(yi. y$, - 

x.   - y. f o. 

lhen the homogeneous system 

Suppöse-that eqs., (17). permitted another solution vector 

yt>„ "' °  °)t where for some j0 

2 (S.. f «*.J z, = 0 , i = 1, 2,  3, 

(22) 

(23) 

admits of a nonzero solution zk  = *fc- y^. where z^ - *J>0 - y.pJ Ö. However, for 

an arbitrary j,  we have 

00    j    /       CO V 

2 (j) (Z. +2 o.fc zk)   ± 0. 
1 = 1        \     K=l / 

(24) 

f<" f f 

11 
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ob      r k    <*>        i ~[- 

and since A f 0, z- = 0 for every j. Since this contradicts. (22?, the uniqueness of 

solution isproyeh. .When A= 0,1beörem.2 does not apply, and we refer the reader to 

Bie'sz-, £es Systems d'Equations hineaires\ 

In general Theorem 2 is difficult to.apply, since the hypothesesare; stringent, 

and even the investigation of the" convergence of the double series 2 2 |a-.-[' offers .-•--• {j        i] 

great difficulty.    The followingjtheprenf might also prove useful as an extension of 

Cramer's rule« 

THEOREM 3» Given the infinite system of equations 

CO 

£   a..&. = c.    ,  i• = ls 2, 3, 
j=i 

(23) 

where 2 | a..| • converges for i  - ls 2, 3, •••••-, and A is nonzero for n sufficiently 
;=i   J A* A*        • 

A.      . A 
large. Then, if the ratio—2-  converges uniformly with k  tos a limit----for 

n c 

k = 1, 2S 3 o- oi "• „ a solution is given by 

"(24) 

PROOF: Let i be fixed but completely arbitrary» Assert 

».     Ä7 

Z a.. •— — c. . 
j=i     l' A 

It suffices to show that for n large enough, 

A> '  , 

where e is an arbitrary positive quantity., For n - i 

1=1  '* U 

(25) 

(26) 

(27) 

and 

2  a. .—• c. 
'/_i ^ A   l 

J=i 
a..  — -£' a..—2.I-+ |-£ a..~^-c. 

12 

(28) 
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4PPEHDIX   II 

ON LINEAR EQUATIONS WITH AN INFINITE NUMBER OF 
VARiARLES. 

Bv MAXIME BöCHBR AN» LOUIS BRAND. 

E. Schmidt's treatment of a system of linear equations with, aii infinite 
number of variables* is of such essential simplicity and importance that it 
seems destined to become classical. The original memoir, however, Owing 
tö its condensation and to the rather abstract form which it has in parts is 
-not entirely easy reading for the beginner, and Kowalewski's presentation^ 
while attractive in some respects, is extremely long: and so arranged that 
unless one reads the whole it is almost impossible to getJat the essential 
results. 

The following treatment, which socfar as it goes is complete in itself, 
is a_modification <of those heretofore given. Its characteristic features are, 
on the one hand, that it avoids altogether the process of normaliza- 
tion which plays such an essential and often repeated role in the earlier 
treatments; and, on the other .hand, that it deals first With the case; of a 
finite number of equations involving an infinite number of variables* aiid; 

regards the case of an infinite number of equations as a limit. 
For the sake of clearness, though this is not logically necessary, the 

algebraic case of a finite number of variables, is taken up first. 
1. Complex Quantities with k Components. The real arid complex 

quantities of ordinary algebra shall be termed scalars in distinction to the 
higher complex quantities, (flu'th, • • •,at),which areaggregates oijf scalars 
—the components of the complex quantity—taken in ä definite order. Such 
complex quantities will be denoted by Greek letters. That complex quantity 
whose components are all zero shall be denoted by 0. Two complex 
quantities, 

a = (at, eh, ' •' , au),   ß = (6i, b2, • • • , bk), 

are said to be equal when and only when oj = 6, (i = 1, 2, • • 
define the sum of a and ß by • 

« + ß =• (oi 4- bi> <k + b2j • • •, 0* H- bk); 

and the product of a by a scalar, p, by 

pä m ap m (päi, päi, •; •, pa«); 

* Rendiconti del CirxolöM^tehiaticp.di Palermo, vol. 25 (1908), pp. 56-77. 
t Einführung in die Determinantentheotie (Veit: Leipzig, 1909); pp. 407^455. 
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108 MAXIME BÜCHER AND LOUIS BRAND, 

The n complex quantities, a\, a», ,an are said to be linearly dependent 
if there exist n scalare, Ci, c», • • • , c„, riot all zero, such that 

Ciai + 0*012 + •' • + c„a„ = 0. 

In view of the definition of the complex quantity 0 this is .equivalent to 
saying.that «i, a*, •••,<*,, are; linearly dependent when and Only when the 
n sets of k scalars each forming their components are linearly dependent. 
Any k + 1 complex quantities having k components are .therefore linearly 
dependent.* When less than k complex quantities are given, there are 
always others linearly independent of them. 

We also consider the inner product, or simply product, of two complex 
quantities a and ß, defined to he the scalar 

aß 53 ai&i + flak + • - • + akbk. 

We note that aß may vanish when, ä =t= 0, ß + 0.; From this definition 
it is clear that the commutative and distributive laws, 

aß = ßa,       d(ß + y) = dß -f ay, 

and the associative law in the case of multiplication by a scalar p, 

p(aß) = (pa)ß = a{pß), 

all hold good. The associative law, in the case of the product of three Or 
more complex quantities^ is not true.. Thus a/jy is meaningless unless 
either {aß)y or ä(ßy) is specified. 

A dash above a scalar shall denote, as'usual, its conjugate imaginary 
scalar; and we shall extend this notation by writing 

Then 
aß = ä/3. 

By the norm of the complex quantity a is understood the scalar 

norm a aä = däi + a2«2 + • • • + akäk = ,| ax |2 + | a* f + • • • + | ak\\ 

which is always real.    Clearly norm a = norm 5.    Norm a is 0 when 
and only when a = 0, and is otherwise positive. 

2: Homogeneous Linear Algebraic Equations.   Consider now a system 
of n homogeneous equations in k unknowns 

«11*1 + aJ2a:2 + • • • + o,\kXk = 0 

C21X1 + 022*2 + • • • + a2kXk = 0 

 v OftiXi + aHzXz + ' • • + a>,kXk — 0. 

* See, for example, Bother's Higher Algebra, § 13. 
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0 
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We may regard the coefficients of each of these equations as the components 
of a complex quantity: 

a, = (a.i, aa, • • •, o») (i = I, 2, • • -, n), 

and also the x's as the components of the complex quantity 

£ = (xux2, ••-,**)• 

Our system of equations may then be written 

(!) «il• = 0, aj£ = Ö, •••,«„$ = 0. 

THEOREM 1,   // $ satisfies equations (I) and is linearly dependent upon 
5i,- 52, • • •, än, Men. £ = 0. 

For suppose that 
£ = Ci«! + C2<*2 + • • • + c„a„. 

Then multiplying equations (1) by cx,c\, • • •, cn respectively and Adding we 
get 

(ciax + C2Ü2 + • • • + c„aB)£ = f£ = 0. 

Hence £ = 0, as was to be proved» 
COROLLARY.    If £ satisfies the equations 

äi£ = 0, Sj* = 0, 

and is linearly dependent upon on, air 

-, «„£ =  Ö 

a„, then £ = Ö. 
We are now in position to obtain a criterion for the linear dependence of 

n complex quantities..   If «,, «2, ••.,«„ are linearly dependent,- 

Cioii + Cjtti + • • • + c»a„ =: 0, 

where not ajl the c's are zero. Multiplying this relation in succession by 
5j, än • • •, än, we obtain the n equations 

Ciaiäi + duiäi + • • • -f cnanäi = 0    (i = 1, 2} • • -, »). 

In this system of homogeneous, linear equations in Ci, Cz, • •., c„ the c's are 
not all zero and hence the determinant of the system mußt vanish. We 
call this determinant, which it should be noticed is a real scalar, the Gramian 
of on, «2, • • •, an and denote it by G («i, a2, ..., «„).   Thus 

(2) G{cti, a2, •••, a„) == 

aiGi    o:ia2     • • •     aian 

Cii&i      Gii&2       • • •       Cc'iän 

ancti   a„a2    • • •    a«a„ 

The relation G = 0 is therefore a necessary condition for linear dependence;. 
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It is -\Uo sufficient.   For suppose that G = 0; then the n sets of scalars 
forming the rows of the Gramian are linearly dependent, and we have 

«,(ci «i+ <*«•• + • • • + c„a„) = 0 (i = 1, 2, • • -, »), 

where not all of the cs vanish. We now infer from the Corollary of Theorem 

I that , . ,   . ^   ^ n • 

which establishes the linear dependence of <*, <*, • • •, «„.   We have thus 

Pr°TiiBOKEM ° il Jicccssarj/ and «#cient «Hnfflion that the complex 
nuantitks a! a« • • •, «- &c '»"'«'^ *pcndent i* ttat f/iezr Gromiwi vanish.* 

We turn now to the solution of the system CD, assuming that these 
conations are linearlv independent, so that G («„ «*, • • -, or.) * 0, Every 
complex quantity, and therefore every solution 6, of (1); can be written in 

the form ^ _       _ 

where „ is some complex quantity.   In order that this be a solution of (1), 
the scalar c; must satisfy the n relations 

W 
L Cior.5i;+ «i««ää + •' • + c"a"S" = ~ *"'• 

Solving these equations for the c's and substituting in (3), we have 

(5) Si = 

ax«!    aia-j 

a„ai    ocna-i 

cna„.  «ir? 

ana„    an-(\ 

a\ 
G{a\, a-i, • • •, «») 

Every solution of (1) can therefore be expressed in this form. That, con- 
yerseli'.no. matter \yhat the complex quantity rj may be, the expression (5) 

c always gives a solution of (1) is seen at once by direct substitution; for 
if we form the product a;£i by multiplying the last row of the determinant 
in the numerator by a.-,-, this row becomes identical with the ith row. 

* We nofein passing thatai,as, • • •\,-ca, are connected by the same linear relation that connects 
the,-rows of'their Grämiah,,writtep as/#bqve. 
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It is al«o sufficient.    For suppose that G = 0; then the * seta of scalars 
forming the rows of the Gramian are linearly dependent, and we have 

äifCl «1+ C-.«i +  • • • + CnOin) = 0       (i = 1, 2,  • • -, «), 

whore not all of the c s vanish.   We now infer from the Cörollaryof Theorem 

which establishes the linear dependence of at, <*,, • • •, «„.   We have thus 

P1
°THEOHEM *> ^ «cccssary n«d mtffcieiil condition that the- complex 

auanlilics a[, J," • • •, «„ be KiicaWy efeptfrnfentis ttöf </ieir GramiavJ vanish* 
1 We turn S,w to the solution of the system (1), assuming that these 
equations arclincarlv independent, so that =0(«i, «. • • •• «•) * 0. Every 
complex quantity, and therefore every solution & of (1), can be written in 

the form _ _.      _ 
pj) e, = Ciö! + Coa-j + • • • + c„an •+• »/ 

where ,. is some complex quantity. In order that this be a solution of (1), 
the scalars c, must satisfy the n relations 

(4) 

fcirtiai + Ciotia». -f • • • + c„a,S„. = *=? art 

°U,«„äi + <**,&.+ • •• + c„a„«„ = -f ab- 

solving these equations;for the c's and substituting in (3), we have 

\aiäi    aiä-2     • • •     aiän    airj 

(5) ft- 

a„ai    a,,a> 

äi        a» 
G(ai, a>, • • •, a„) 

a»ä„    a„i? 

a»       5    1 

Every solution of (1) can therefore be expressed in this form. That, con- 
versely, noanatter what the complex quantity rj may be, the expression (5) 
always gives a solution, öf (i) is seen at once by direct- substitution; for 
if we form the product a,$i by multiplying the last row of the determinant 
in the numerator by a,-, this row becomes identical with the ith row. 

* Wc note in passing that <*i, at, •••,o, are connected by the same linear relation that connects 
the rows of their Gramian, written as above. 
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«if 0; a£ = Ö, <*„* = 0, 

arc linearly independent, their general solution is given by (5), iWicrc n is an 
arbitrary complex quantity.^ 

When |i vanishes, we see from (3) that r] is linearly dependent upon 5i, 
äir • • •> «,,. Conversely,, if tfis linearly dependent upon-en, 5-., •••-, ä,„ the 
same is- true of ijiy and hence,, by "Theorem 1, & = 0. Xow to two jj's 
correspond two |i'k whose diffierence is precisely that solution of (1) which 
corresponds to Hie difference bet\\"een the ?j's. Consequently two different 
ij's. yield- the same £* when and only when their difference is linearly der- 
pendent- upon Si,- 5»,, • • •,- ä„. 

If n > k ihß equations (1) are necessarily linearly dependent, so that 
Theorem 3: does not apply to this case. If n = k every ij is linearly de- 
pendent on the as, so that in this case, acs iscWell known, equations (1) have 
only the trivial solution zero. If n < k we can find k — n complex quan- 
tities aH+i, &„+«, ••••,< äk such that 5y, äir • • •, äk are linearly independent. 
Then every ij may be writ ten as Ciäi + Cjä-. + • • • + Ctäir, but as a change 
in ri by a quantity linearly dependent upon äu ä>, • • -,- «„ does not affect 
formula (5),- we lose nothing: in generality if we assume ij-of the form 

rj = C„+iä,,+i + • • • + Of«*-.- 

Thus the solution (5)' contains, as it should, k — n arbitrary scalars,c(7,1+f, 
•••j Gh, and contains them linearly and homogeneoushv 

A formula for the norm of §i is readily found,   from (3): 

(6)' norm & = h<x&i + • • • + euaH$i + ifo = nu 

If we'form the product J;$I from (5) by multiplying the last row of the deter- 
minant in the numerator by TJ, it is clear that 

(7) norm £i = 
G(ah a>, • 

<j(ah a*, 

oc„, 1?) 

We proceed? to use this relation to establish an important property of 
Gramians. In (7) «i, at, • • -^an, J?,may be regarded as n+1 arbitrary com- 
plex quantities; we will assume that they are linearly independent.   Then 
»j is clearly not a linear combination of St, a-. a», so that in + 0 and 
norm ti > 0, Moreover this assumption entails that none of ax, a2, • - •, 
a„, t\ vanish^ and hence the Gramian of any one, e. g.,G («i) = a\ä\, is real 
and positive. Hence by giving to n in (7) in succession the" values 1,2, • • •, 
we establish by mathematical induction 

THEOREM'4.    The Gramian of any number of linearly independent complex 
quantities is real and positive. 
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3. Non-Homogeneous Linear Algebraic Equations.   We cqme now to 
the system of non-homogeneous equations 

(8) 

•, a„ are linearly independent, and where we again assume that a\, a*, 
try to find a solution of the form 

(9) $o = Ciä'i + döc-i + '•• + c„5„. 

Substituting this in (8), we obtain n linear equations, which may be obtained 
from equations (4) by replacing their right hand members by blt bif • • •, 6„ 
respectively. These can, as above, be solved for the c's by Cramer's rule, 
and the results substituted in (9).   This gives 

s£0 = 

Ori»!       «1«3 «l5n — &1 

anai    ctnty.2 

5i        a* <Xn 0 
(10) so - r( , &(ai, a*f • • •, a„) 

That this is really a solution of (8) we see by direct substitution.- :F<5? if 
we form the product ä-ft, the last row of the determinant in the numerator 
becomes 

a fin, a,ää, • • •, a fit,.., 0; 

and, when the tth row is subtracted^ from this, it appears that 

«,•& = btGjG = ba 
We have, thus proved 

THEOREM 5. // at, a», ••-,«„ are linearly independent tlie equations 
(8) have one arid-only one solution of the for*" (9J, and this is given by (10). 

The general solution, of (8) is of course Obtained by adding "to the par- 
ticular solution (10) the general solution (5) of the homogeneous equations 
(1); it is therefore 

«läj.    a\5ti     • • •     a\än    air} — bi 

tits ? = so, -r £i — 

a„«i    anaz 

äi        a-i 

anän    anri — b„ 

G(pii, a-i, • • •, a„) 

The solution (10) of (8), which is characterized by being the only solution 
of (8) tfhich is linearly dependent upon the 5's, shall be called the principal 
solution of (8).   It has also another characteristic property which may 
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i 

bes deduced-as follows'.   From (11) we sen that 

SS = (So + St) (So +• SO = SoSo + S0S1 + SiSu + SiSi; 

and from (9) 
SoSt = dSiSv -J- c-jä-jSi + • - • + c„«„Si = 0,     •- > 

remembering, that St is a solution of equations (.1)-    Consequently SiSo = 0, 
and 
(12) norm £ = norm So + norm Si, 
so that 

norm S ^ norm So, 

the equality sign holding only when Si = 0, in which case S = So- Thus we 
have 

THEOREM 6, Among the solutions of (8) no oilier has so small a norm 
iis the.principal solution. 

To obtain a formula for norm So we multiply the last row of the deter- 
minant in the numerator of (10) by So and simplify by use of the equations,. 
ä,Sö = bif thus* 

«Itti      Ct\<X2       • • •      C\är,      hi 

(13) norm So = 

ar„«i    ar„ä2 

bi        h 

*«««        yn 

o„      0 
6'(«1, «2,    ' ",  Ctn) 

Norm S is now given by (12). 
4. System of a Finite Number of Linear Equations in an Infinite Num- 

ber of Variables.   We now consider a system of ti equations 

(14) o i\X\ + a nX-< + 0 (i = 1,2, •••,«), 

where the number of unknowns Xi, a», • • • is infinite.    For this purpose we 
use complex quantities with an infinite number of components.    If a = 
(a\, ö., • • •) is such a complex quantity, we consider the series   «i -+   os. 
+ ••••    If this scries is convergent,-we say that the complex quantity 
has a finite norm and define 

noriii « sa j ü\ p -f- i »a i- i... I _ ,/  
| tl   I    =      r    IH/EX11   I«. 

* If not all of the fc'n vanish, it is clear from o(|iiatiiins (S) dial &> + (I, an<l lienoe norm $„ > 0. 
Uy moans of d'.i) wo may ivtw prove at once the followirg 

TiiKOK.KM. // Ihr (Iriiiiiiiiii of linrarlij imlrpimlriil cimi/iltx i/iitiiililirx ix Imnlrml lit/ xralnrxtlial 
do mil all ranixh no ax lo form a dilmiiiimnl of Ihr. Iij/ir of that in (13), Ihix Imnlrml (Iramiaii is 
m yaliiT. •• 
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The sum of a - (au a», • • •) and ß — Q>u b2, • • •), and the product of a 
by a scalar p are denned as 

a + ß = (di + bi, a2 + b2, • • •),    pa ss ap = {pau pa?, »• •)• 

The product <*0 we define by the formula 

aß = Oi&i + a-.s&2 + 

whenever this series converges; When a and ß have finite norms their 
product aß alwavs exists, as then the series in question is absolutely con- 
vergent.   For writing 

«* = (Ia.I,la,|, • • -, |a,|),    ßk = (fh\, |h\, • • -, |bk|) 

we have from Theorems 2 and 4 

ßtäk    ßkßi.- 
>0. 

Hence, as ak = «* and ßk = ßk, 

(akßk)
2 ^ norm a-norm /3 

or 
|a,6i|+ ••• + |«*M £ \a\\ß\. 

Since this holds for all values of k, the absolute convergence of. our series 
is established. 

The distributive law, a(ß + y) = aß + ay, evidently holds when aß and 
ay have meanings. Thus, in particular, if a and ß have finite norms, wa 
have 

norm (a + ß) = (a + ß)(ä + ß) = aä + ßä + aß + ß'ß, 

so that if two complex quantities have finite norms their sum also has a. 
finite norm. It is also obviously true that if a complex quantity has a 
finite norm it will still have a finite norm after being multiplied by a scalar. 
From these two facts we readily infer that if a number of complex quantities 
have finite norms any complex quantity linearly dependent upon them also 
has a finite norm. 

Using the n + 1 complex quantities 

a< = (aiij a.s, • • •) 
£ = (.Tifar2, •••), 

(i= 1,2, •••tn), 

the equations (14) may be written 

(15) «rf = 0, a2£ = 0, •', aJi = 0. 

We place upon the coefficients at the restriction that they have finite norms. 
Then £ is to be so determined that the series a,£ all converge to the value 
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zero. If ? has a finite norm the series a,£ necessarily converge, but this 
may also be the case when $ has an infinite norm. 

THEOREM 7. If £ satisfies the equations (15) and is linearly dependent 
on at, a-z, • • •, otn, then £ = 0. 

The proof is exactly that of Theorem 1. We shall define the Gramian 
of a set of complex quantities of finite norm precisely as was. done in §2. 

THEOREM 8. A necessary and sufficient condition that n complex quantities 
of finite norm be linearly dependent is tliat their Gramian vanish. 

The proof is precisely that of Theorem 2.   : 

THEOREM 9. // equations (15) are linearly independent, their general solu- 
tion is given by formula (5), where y is any complex quantity such that the 
products air}, a-t% • • •, anr} oil exist. 

The proof is practically identical with that of Theorem 3. In order that 
the solution & have a finite norm it is necessary and sufficient, as we see 
from (3), that ij hsve.a finite norm. 

Here, as in § 2, it is clear that two »j's lead to the same solution & when 
c and only when their difference is linearly dependent upon äi, 5», • • •, ä„. 

The. requirement that ij be so chosen that «irj, a«?}, • • •, a„rj allc exist 
will be fulfilled when J? has a finite norm. It will, however, be fulfilled in 
many other cases. For example, denoting the components of a,: by a a, 
a-2, • • •, if all the a,/s are positive and a-,-y constantly decreases and ap- 
prpaches zero with increasing j. we may take for T> the complex quantity 
(+1, — 1, -H 1, — 1, •'••) whose norm is infinite 

Whenever & has a finite norm, i. e*, whenever this is true of »j, its norm 
is given by formula (7).   As in §2 this formula may be.now used to establish 

THEOREM 10. The Gramian of any number of linearly independent com- 
plex quantities of finite norm is real and positive. 

We now pass to the non-homogeneous equations: • 

(16) ai£ = 6i, a2£ = bi, •••,«„£ = &„, 

the coefficients a,- again being assumed to have finite norms. 
THEOREM^ 11. Jf on, a*, • • •, a„ are linearly independent, the equations 

(16) have one and only one solution linearly dependent upon 5», «2, • • •, a„, and 
thissolution is given by formula (10). 

The proof is precisely that of Theorem 5. The solution in question is 
termed the principal solution. The general solution of (10) is given by 
föfniülä (11), where 57 is any complex quantity whose products with «i, 
«2, • • •, a„ exist. 

THEOREM- 12. Among the solutions of (16) no other has so small a norm 
as the principal solution* 

The principal solution, being a linear combination of 5i, at, • • •, än, 
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has a finite norm.   This is also true of the general solution, ,£ = t0 + j 
when and only when & has a finite norm.    From here on the proof is just 
like that of Theorem 0. 

The norm of $„ is given by formula (13).* 
S. Some Theorems on the Limits of Complex Quantities, We proceed 

to establish some properties, which will be important for us, of complex 
quantities with an infinite number of components.t 

If a and ß have finite norm«, we have from Theorems 8 and 10 

G(a, ß) = 
aä    aß 

= kM0|a-.l«0|*£o, 
ßä    03 

whence 
W) \«0[*\a\\ßl 

Again, if  y = a +.3, we "have, using (17)  and   remembering   that 
I « I = I « It 

| y !3= (a 4- ß) (ä 4-0} == aä + aß+ ßä •+ ßß £ ja j2 4-2 j a | j ß j 4- | ß |2, . 

<") UlgUI + lßl. : 

We next lay down the following 
DEFINITIONS.   If «„ == (a.,, an2, • -•)', « = (a,, a-, • • •.% we say that an 

converges tö a as h oecontes-infinilewheri 

and write 
lim ani = a,- 

lim an = a. 

(* = 1,2, ....), 

ire say </i«i a„ has strong convergence toward a when, for all values of n 
greater than a certain number, a - an has a finite norm, and 

lim | a — a„ I = 0, 

and write, using Schmidt's notation, 

lim a„ = a. 
11=»" 

Strong convergence implies convergence.    For- if lim„=„ | a - a„ | = 0, 
there exists, for every positive e, an integer N such that 

(19) Zia,-a„,i2< e-, n> N, 

The theorem regarding bordered Gramiaris, stated in the footnote to formula (13), may 
now be generalized so as to apply to the Gramians of complex quantities with finite norms 

t Due to E. Schmidt, 1. e., ,§§ 1-4.   See also Kowalewski, 1. c, § 165. 
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so that 

(20) 
or 

a,- — a„i\ < «, 

lim a,ti — a,- 

J(i=l,2,---), 
1      n > X, 

(i=l,2, ...)•* 

If lim»=«. a» = a and or.-, has a finite norm when n is greater than a certain 
number, then a will have a finite norm. For (19) states that when n > X, 
a. — a„ has a finite norm; consequently the sum of an and a — a» has a 
finite norm. 

Again, if •lim..,q» = a, lim»=»^„ = ß, then 

(21) lim(a„ + A.) = a + ßi 

for we have seen that when n > X,a — a„ and ß —ßn have finite norms, and 
hence from (18) We have. 

-:|ia + :ß. V rtfc «• At | ^i a - a! | + '| |8 - £„ |. 

Furthermore if a», /3» hsvc*5nite norms when ?i > X, so that a, 0 have finite 
norms, 
(22) lind-a»ßn = «|8; 

for when n > X, we have, using (17) and (18), 

| a/3 - a„ßn | -1 (a - a.)/9 + (0 - ft,)« - (a - a„)(/3 - /?„) | 

£|a-aJ|/3| + |/J-/V||a|+1a-a»||/3-/J,,|. 

Important special cases of (22) are 

(23) lim a„ß = aß) 

(24) lim norm a„ = norm a. 

THEOREM 13. A necessary and sufficient condition that limn=x a„ exist is 
that, when n and m are any integers greater than a certain number, an — am 

have a finite norm, and that to every positive e there correspond an integer X 
such that 
(25) | a„ — am j < e, m, n > Xi 

The condition is necessary; for if Hm„=10 a„ = a, j a— a»j < \<t when 
n > X.   Hence when m,n>X 

* We say that a» converges uniformly toward a when for e^grfy positive « there exists an JV 
euch that (20) is true.   It is clear from the ob,ove that strong convergence implies uniform con-' 
vergence, and uniform convergence implies convergence; but these implications do not hold in the 
reverse order. 



_I^RH..I_    .LJW1 

y 

H 

r 

\i 
V' V 

" ;4 

178 MAXIME BÖCHER AND LOUIS BRAND. 
i 

\an — am\ = | a« — a + a — am | ^ \an ~ a\ + \ a — am | < e. 

To show the sufficiency of the condition we first observe that if (25) 
holds, 

•r. 

£1 OR* — amk\- <e-, •   m,n> N, 

and hence 

|an4-am,|<«, 1     Wfn>tf.    f 

This shows that \imn=xank exists; denote it by a*.   Then as< 

limX) |a„* — flmit.il2' = £ i a* - ami- r ^ «: 

As this holds for every p, we have 

S|at-amt|
age5

) 

or, upon writing a = (ai, a-, • • •), 

m>N. 

m> N-r 

lim | a «m I - 0 
Mac« 

as we wished to prove. 
COROLLARY. When condition (25) is fulfilled and a^ is always of finite 

norm, a is also of finite norm. 
DEFINITION. The infinite series of complex quantities en -j- a2 4- • • • is 

said to converge strongly to a complex quantity <r when <rn converges strongly to 
<r, where <r„ — a% + • • • + cen. 

From Theorem 13 we see that a necessary and sufficient condition for 
the strong convergence of the above series is that after a certain point the 
terms of the series all have finite nonasjind that, ta every positive e, there 
correspond an integer N such that ~ c" 

(26). I vn — am | = | am+i + «m+2 +*•••+ an\ < e,       m, n > N. 

DEFINITION. TWO complex quantities a, ß, are saidio be orthogonal if. 
aß, and hence also aß, is zero. 

If the a's have finite norms and are mutually orthogonal, we may, by 
squaring (26), readily reduce it to the form 

| «m+i |2 + | <*m+21
2 + • • • + | an |2 < e2, m,n> N. 

This being precisely a necessary and sufficient condition that the series 
I «i I2 + | «212 + • • • converge, we have proved        c 

THEOREM 14.   A series of mutually orthogonal complex quantities of 
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finite norm %s strongly convergent when and only when the series* of their norms 
converges. 

Furthermore asftf»|2' — \&i r+ \M\
2
 + ' - 4 |: «•• & *e ißfer ham (24) 

the 
COROLLARY. // the conditions of Theorem i/j. are fulfilled, the norm of the 

series is equal to the series of the norms of the terr/is. 
6. System of an Infinite Number of Linear Equations, in an Infinite 

Number of Variables. We are now In position to consider the infinite sys- 
tem of homogeneous equations in an infinite number of variables 

where 
&i;   ==    (äil,   Or-lTy -•' '  ') (l =    1,2,    •  •  •), 

£ = War*, • •• ). 
We assünte that aili the coefficients aj have fihite_norms and none of them 
are linearly dependent. The general solution, ft"', Of the first n of these 
equations is given by formula (5) 

aiäi    ctioc-y   . • • •     aitth;    QiiV, 

(28) ^»); = £errsi + ^= •3»...     ^5- 
<=: Ö(ar, «2. • • •. an) 

Here..(eif"Vft00, • • •, c„(n)) is a solution of equations (4)'. 
We wish to show thäfc'£i(n>_aonverges strongly to & limit as n = «>; 

and to this end we proceed to throw it into the form 
fcco = Slu> + (Sl«> _ Sl(i)} + ,.. + &(»>. —flc-i>). 

If we write 
c.(n) _ 0.(n-l)  = ZW (i = 1, 2,   • • •, ?l -  1), 

and subtract from the first n —4 equations (4) the similar equations satisfied 
by (ci(n-1), • * •, cn-i

l"~iy), we find that the z'a satisfy the n - 1 homogeneous 
equations 

ai5i2i(n)   -}-   aiä-iÜ2M  + • •• • +   aiänZ,/'0    = 0 

. än_iäi«i(B) + a„_iä222(n> + • • \ +. a„_iän2,,(n) = Q. 

* The proof above establishes the more-general theorem in which the condition of .orthogo- 
nality is replaced by the condition oti&j + aim — 0 or (real part of OK ay) = 0* when i + j, iij — 1, 
2, .-.. 

a- 

1-5 
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Moreover we have < 

|i°° - «(-1) - ft°°Zi + S00«* 4-   •• + «.<">«»    (n - 2* 3, • •). 

Solving the homogeneous equations for the z's and substituting in the last 
equation, we have 
(29) -,<•> •i ,<•-» kK<f>n 

where/t- w «< undetermined scalar and 

ai5i      atät 

«i at 

ai«» 

a» 

(n-2,3, •-). 

Multiplying both sides of (29) by a» and using (28), we find — HH/GH-i 
— fc.GW where, for brevity, we have written 

ai<*i aia» ai«»-i «in° 

Therefore 

äu-icti   jtn-\at 

G»-- G(«j, •••,«»). 

$,<»> _. fc«-» 

(n = 2„3, ..-), 

and as-li^ -— ij •*- (at9/ai5i)«i, we have, if we set <px— 5i, <r0 = 1, J/t« ain, 

(30) ff. 
h.i lrB_itrB 

If ti, and hence fr0"*, has a finite norm, we see' from (6) that norm $i(m> 

•» iiji'"'.   Assuming, then, that this is the case, we have, since v»»i> «H», 

(31) norm *,<*> - \t, |* - 'SJ^G ' 
The series of positive or zero terms 

*JJLJi 

is therefore convergent for every »j of finite norm since the sum of its first 
m terms is by (31) not greater than | ij J1. 

We next note that the terms of the series of complex quantities of finit« 
norm 

feJMR 
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(i= 1,2, ..-,n-l). 

«i < n. 

are mutually orthogonal; for as 

<f>aCH = 0 
we have 

By Theorem (14) the series (33) will converge strongly if the series of the 
norms of its terms converges.   If we use the relation 

this series of norms proves to be precisely (32), which we have just shown 
to be convergent when v is of finite norm. Hence series (33) converges 
strongly When ij has a finite norm, as does likewise the series 

(34) & m lim &-<*> = it - £ 
n=l Gn-lGn 

Vn-V — £ 
V<Pn 

=1 <£nV>. 
</>n- 

ii is a solution of equations (27) having a finite norm. For consider any 
one of these equations, s£y <*»£ == Q: since 

akttm = Ö (m &k,k + 1, • • •), 
we have from (23) 

Hm (a*£iW)) = a*£i = 0. 

That |i is of finite norm follows from the fact that £i("° is always of finite 
norm and converges strongly towards &. 

ConverselyVif £i is any solution of equations (27), we may obtain it by 
letting rj = & in the formula (34), for Jhen all the terms after the first 
vanish.   Thus we have proved 

THEOREM 15. If ij is a complex quantity of finite norm, &(n), given by 
formula (28), approaches.a limiting complex quantity of finite norm as n 
becomes infinite, and this limit, fi, is a solution of the equations (27). 

Conversely, every solution of (27), whether of finite norm or not, can be 
•obtained by properly choosing ij in (34). 

From formulas (24) and (31) we have 

(3B) norm fc - Hm norm &<»> = U I2 - E TT^ir 

whenever rj is of finite norm; Referring to (7), we see that this may also be 
written as: 

'G(«i, aa, • • •, a„j y) 
<36) norm & = lim 

IP 
A*- ; 

? 

•'$ i. 

f "I! 
.i, 

AN »• 

=»    Cr(ai, .«2, • •'•, an) 
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We torn now to the non-homogeneous equations 

(37) «il = 61,   osd ^ h, • • v 

where we again assume that all the coefficients «* have unite norms and 
none of them are linearly dependent. The principal solution of the first 
n of these equations, which we will denote by £o(B), is given-by formula (10) 

a\cti  'tociät     • • •"    otiän  iu-"bi 

(38) &(->=E;C/»>5.= :G(läi, ä2, - • •, a»)r 

*. . ^ 
Kere (ci(n?, c2'(*\ • • •,cB

(B)) is a solution of the equations obtained from: (4, 
by. replacing their right-hand members, — d{5},- — ofei?» •••> ^-a»? by 
6r, &2> • • *y biv respectively. A consideration o!f the process by which £i(n) — 
.&<#*) was obtained shows that we-may obtain |o(n> ^ Jfo<n-1) from this, ex- 
pression by replacing^ am — a«ij, " • -j — ünnÄßyb'i,%, • • •,.&» respectively; 
consequently in place of rr #„ we must now introduce the determinant 

and we obtain 

As 

«iai    «ia2 

«säi    «25» 

a„ai    aitai 

So(-> _ |0(»-i) == 

aia„_i 

«2ä„_i 

a„ä„_i 

62 
»(n = 2,3, •••) 

*0 (»  = &i    - 
-=••«1, 

CtltX]. 

(39) So0"* = £ 7T^4r Vn. 
n = ltrB-.ltrn 

We are thus led to consider the series 

(40) 
D. 

11=1 Gn-iGn 
<P* 

whose terms are mutually orthogonal complex quantities of finite norm— 
as we know from the previously established properties of pn. By Theorem 
14 this series will be strongly convergent when and only when the series of 
the norms of its terms 

.-f -; 

L?. -Mi 
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Converges.   Thus when series (41) converges we have 

Bn 
(42) & - limi0<»> = E 

M=I 0rn—lCr« 
^K 

arid an argument similar to that which follows (34) shows' that £0 is a 
solution of equations ;(37) having a finite rior-m. Now if equations (37) 
have any solution, £, Of finite1 norm, then, as fo(CT> is the solution of least 
norm of the? first fit of these equations, 

norm ft**"' ^ norm £; 

arid since norm $ö
(
"° proves to be' precisely the sum of the first in terms Of 

(41), the convergence of this series is established*   Thus we have proved 
THEOREM 16. A necessary and sufficient condition that equations (37) 

have a solution of finite norm is that the series (41) converge. When this is 
the case, %o('°, given by fofrnuid (38), approaches strongly a limiting complex 
quantity of finite normas/nbecomes infiniie\<£ndthis;limit, £o, is « Solution of 
the equations. 

£o is tevmed the principal solution of (37). We may form the general 
solution by adding to the particular solution & the general solution iji. of 
equations (27):: 

:   CKiSl ÖClOCi «i°Sn; avn -r- bi 
-_ •         - r. • e •        • c             •             • 

a„äi Oi,,ä2 
... OCnOi,, CC,Ji — b'n 

_- _- ._ _ 
«i a> ... OCn 1) (43)       H?o + ^| G^~;:.,„„) 

From the Corollary to Theorem 14 we have 

norm 

or, referring to (13), 
n=l Cr„_iUn 

• •• -      OtlOCn      6l 

(44) norm & = lim — 
G(ai, «2>   • • •> «n) 
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If ft has a finite norm., the. same is true of $, and 
norm £ = norm £0 -H norm fr, 

for from (38) fc«*0?, * 0, so that upon applying (23), &£i = ftfo = 0. Con- 
sequently 

norm £ |= aorai & 
the ssgtt of equality holding only when fr = 0, in which case | = &• Thus 
wer1iave proved 

THEOREM 17. 4»jonj Jfte solutions o/ (37) no o^ier few scrsmall a norm 
as tte principal solution. 

7. Some further facts.—The general solution ft of the homogeneous 
equations (27) is a function; of the complex parameter ij 

ft = *(*)•      < 
A glance at (28) shows us at once that ^ is, in an extended sense, a 

linear function;that is 
THEOREM 18. // »»', ij", • • •, nm <we complex quantities with finite norms 

andc*, • • •, Ckare scatars, then 

*(c,n' + • • • -f CM1») - ciKrj') + • - + cW1)- 
A further important fact is that ^ has strong continuity' fbjTevery value 

of J> with finite norm; that is 
THEOREM 19. If ij' Aaa o ,/»»#« worm, <Äen as if approaches V strongly, 

^(i») approaches f(v) strongly. 
To prove this, we derive from Theorem 18 and from (35) the relation 

norm fyW) — lK>»)] = norm ^(ij' — »?). ^ norm (V — JJ), 

from which our. theorem follows at once. 
Let us now denote the components of i) by yit y«, , and the com- 

plex quafttity whose first"» components are y\, • • •, yn while ail its sub- 
sequent components are zero by ij„.   Then, if rj is of finite norm, 

(45) lim if, - 7j. 

••rn 

!'. r 

V; - v* • 
-.Ui. 

t 

w 
ft* i 

For norm (7 — JJ„) = |s«+i.r + Wwl2 + > and, this being the remainder 
Of a convergent series, approaches zero as n. becomes infinite. 

Let us denote by «,• the complex quantity whose ith component is 1 
while all its other components are zero.   Then 

fin). = lim 

«lOl 

«1. 

aia»    au 

0CKan     «ni 

-—j-        6(ai, • • •, .«„). 

1- x 
A... i. 
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THEOREM 20. A necessary and sufficient condition that the homogeneous 
system (27) have no solution of finite norm except zero is that all the quantities 
\p(ei)be zero. : 

That this is a necessary condition is. obvious.- To prove it sufficient 
assume ^(e.) =0 (i = • 1, 2, ••••). By Theorem IS, tf(i?) = 0 whenever v 

has only a finite number of components different from zero/ But, by (45), 
every 17 of finite norm is the strong limitof such a set of »j's. Consequently, 
by Theorem 19, $(tj)- = 0 for every ?; of "finite norm,, as was>to be.proved. 

We have expressed the^ solutions if and & as we'Jl as their norms, äs the 
limit of the ratio of two determinants of order n •# I and n as n becomes 
infinite. We proceed to inquire under what conditions the individual 
determinants^ and not merely their ratios, converge. In all cases the 
denominator determinant is G(a1} — •, a„), and if thi's'Gramian converges 
as n becomes infinite, the determinants in the numerators'will likewise con- 
verge. Thus we have merely to consider the convergence of G(ät, • ••-, a„) 
as n becomes infinite, or, as we phrase it, the convergence of the' infinite 
Gramian, G(qn, «2, • • •). 

THEOREM 21. A sufficient condition for the convergence of the infinite 
Gramian of the complex quantities a\, a?, v * which have finite norms is that 
the infinite product 117=! I ct 112 diverge to zero or converge. 

Consider the set of'complex quantities /?,- = ar,-/|la,| whose Höfms are 
all unity.   We have, then, 

(=1 
(46) (?(«„ • • -, #„) = Gißt, • • •', ßn)il |ä.-|*. 

Now 
ßißi /••• ßA-l fcft, 

G(ßy ßn)   = 
ßn-lßl       •••      ßn-lßn-1      ßn-lßn 

AÄ •••        /3„/3„-l 0 

+ \ßn\?G(ßit •••,/3„_1). 

The first term on the right is a bordered Gramian of the form of the numer- 
ator of (13) and is therefore negative or zero (see footnote at the end of. § 3). 
Consequently 

G(ßi, ••-,/?«) ^ <?(•&, •••,/?„-i)> 

and since G(ßi, • • •, ßn) is never negative, lim„=M G(ßt, •••,/?„) exists. Thus 
when IX7=i I a 112 diverges to zero or converges, we have from (46) that 
(?(ai, a2, • • •) converges, as we' wished to prove. 

COROLIIARY. 1.   If Gißi, ß2, • • •) .4= 0 the condition, that tI7=i I a*I2 diverge 
to zero or converge is also necessary for the convergence of G(ai, a2, • • •)• 
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COROLLARY 2.   7/ HT=t I «<• I* = 0, then G(aif on, • • •) = 0. 
We" also note that.G(«i, on, •• •-) = 0 when any of the complex quantities 

ft,- are linearly dependent. , 
From Theorem 2t we now see that the determinants occurring: in the 

expressions for $i(n> and ft(n) (and for their norms) wilfconverge as ?j = »'if,, 
at the start, the equations (27) and (37) respectively are divided through 
by scaiars so as to make the norms1 of all ih& a's ^ 1. If, when this is 
done, G'(aiv «sy • • *.) +-0, the formula! for & and ft furnish solutions for 
these infinite systems of equationshi terms of infinite determinants, properly 
so called. Of course the last row and column of the numerator determinants 
must then be Written as first row and column. 
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APPENDIX« III 

Consider an infinite dimensional vector space V |£s TJ,4I *• • • "} over the field 

of complex numbers. Each vector is of the form , 

(1) 
<f = (*!,• *2r* - •) , 

or 

(2) 

whepe^the components^ are from the complex field. Place; the restriction on the 

vectors of V that 

%   \x.\-   converges^ 

Define the inner product of two vectors as 

00 c 

(£, T?) =2 *i y{ > 

(3) 

(4) 

cwhere *. are.the components of £, and. y- those of 17, The series defining the inner 

product of any two yectorsin Vconverges because of the condition expressed by (.3). 

Also, define the inner product of a vector with its complex conjugate by 

Ä    03 00   ,    , n 

1=1       1—x 

(5) 

Notice that \\£\ |= t- if and only if all the components of £ are zero. E,  is normal 

if I i^ 1"!" — I- £ i^ orthogonal tö 77 if 

(^, n = 0. (6) 
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It is obvious that if§i,  £2, '•-•*-,  ^R satisfy condition (3), then 

0f± ^i + 0f2 f 2 + *• *• "• «n ^»i does' ' 

?1 

We say that the sequence &£, b2s converges strongly to £ if 

(?) 
„-«'CO' 

r»W  UCOAC pate by M & set of vectors satisfying condition (3-J, a vector.^ is a 

limit vector" öf. if if an rj exists in. M for every £ > 0 such that \\g - rj\\< £. Wheri 

M contains its limit Vectors it is" called complete.    A complete set. A/ is called 

linear if. 'for g arid 77 in 1A\ we have all Vectors d-x g +' tf2 77. in M. 

I I 

i 

N 

Let &/, V= 1, 2, 3, be an infinite set of vectors., If U is: the set of *all 

finite linear combinations öf the §'•, with constant coefficients, then the set 

y - M T A/', where A/' is the set of limit vectors of AY„ is a compJete linear set, and 

§'  , V = 1-, 2„ 3>, » • • ° is ä basis for % Ä vector is said to be orthogonal Jtö a 

set y if it is orthogonal to its basis. As in the finite case, ä basis may be re- • - 

placed by a normal orthogonal basis.. (The so-called Schmidt process). 

¥>% 

[f :• 

If y is a linear set with basis ^ , v — 1, 2,. 3, "-•••, and 17 is an .arbitrary 

vector satisfying condition (.3-)'» then 77 decomposes in one and only one way into the 

sum of a vector in y and ä vector orthogonal to y<-    That is, 

77 = 4 +• pt (8) 

\ M 

si 

I 

where ^ is. in y and p-is orthogonal to % p is called the perpendicular vector of 

17 with respect toy.  ||p||= Ö if and only if 77 belongs to y, 

Given a set y -   \£r .   ..... t ^j ^pd 77 - (ylf y2, «• •• ••, yfe 

£i = fail» *^2y *iaf " " "» *£fe» *' *'")» p-may be cons 
and let fi.. - (£ji, gj).    Then p> is given by 

> . o . * .1 

tructedo p'= {rltrz , •• •- <yrrt) 

P 

A^21 Äf22 ' 

Oil      012 

(£1*77) (£2*77)' 

/ZI <£.,. 

A^n      £2 

& nn      °n 

(£»»?7J  r/ 

16 

Zi/i .. '        ii... 

P-21 A^22 

Oll     012 

A^ 

'";   Pn 

(9) 

iv 

t--'i 

"   fc^ 

•| » 
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If y possesses an infinite basis £v, v - 1, 2, 

.p.= 7,-l  (T,, £,) ^  , 
(10) 

I/=l 

where ß   is a normal orthogonal basis replacing ^ 

"Diese preliminary concepts.will now be applied, to the solution of an infinite 

system of linear equations. Let the given system be 

CO 

£ a., x.   = c. ,   i - 1, 2S 

in matrix solution 

ÄX:~ C. . 

(11) 

(12) 

Let OU represent, the vector formed by the complex conjugate of elements iri the n 

row of the matrix A. 

««=-cv • v -*•••* a»»; °"°'") 

penpte^by.y the: set with basis fcl5 bi2i>'.••• »• % a,,,  <••«•••- Jrahd denote by yn the 

set with basis. -£ax. ^aa>  <••_•••>•, 'dn^% i %+r. >  *'••••   •{•  ,    The set ynis the same as 

7 with a   removed.    Let:)9-   be the perpendicular vector of 0tn with respect to y^. 

THEOREM: If a   lies in y. for no value of n (linear, independence of vajiis), and 

if &Xt %,  ••*"••» a
n?    ' "' "satisfy (3)„ the eqs.  (11) have a solution if 

00 I C  4'" 
s    • n 

n=1 I'IA?J.M' 

converges, and the solution is given by 

(Pn,G) (14) 

n       2 

'•IP*« '•' 

In matrix notation the p-   , where 

(15) 

17 
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i »i     i        ->t^—Y.w 

•ÄSBfaff^r; 

—O—.UUI -,   ^.ti. -iwt;:- -1 &J.JU- j»4^b. 

••»••'•*! ;w'i<^.,-«•„• 

: ! 

if 

-5< 

M 

i i 

3     V|] 

« 

«     "       .  frt 

7    V. 

rr 

utifiiattfl 
form a matrix 

Pi 

P2 

11   ' 12 

21   '22 

r   r 1*1-    1*2- 

Tin 

•.  • • 

If we consider a matrix B,  where 

B - 

ii 12 

Hpi-lT^.      I1PIH
: 

2-1 22 

W^ ri IMP 

'in   . 
TTbi* 

1WP 

ni ii2 

l^jf    ikii? :||2 

and T' denotes the transpose operation, then we can write 

X = BC, , 

where ß serves as a left inverse for the matrix A in (12). 
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'3.    Rieszy-Les S$siems*d~<EqMiions~i,iiieäifesi • (-1913-)'- 
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